
Jeff Deifik
jeff@deifik.com

About Me

• MS in Cybersecurity, CISSP, C|CISO

• Software for first e-commerce system (from 1985-1995)

• Software for the first orbiting radio telescope satellite

• Software for the most advanced pulse oximeter

• Cybersecurity for government satellite ground control,
balancing sound cybersecurity with cost and schedule.
Currently employed at The Aerospace Corp.

• Interest in the intersection of cybersecurity and software
development began with white hat password cracking
over 30 years ago.

Cracking 936,504,299 Passwords

• Dump from Have I Been Pwned

• Good news – they are NTLM format

• Bad news – 936,000,000

• This requires a Big Data approach and lots of RAM

• Started with 128gb and went to 256gb

– Generally needs server grade hardware for lots of RAM

• Limited RAM means I could only run a few threads
at the beginning

• I have found 92.0%

Tools
• John The Ripper

– Infrequent official releases, Many unofficial releases

– Poor Graphical Processor Unit (GPU) windows support

– Easy to make custom rules

– Good mailing list support

• HashCat

– 6.2.6 latest release Sep 2022 

– Great GPU acceleration

– Primitive rule syntax

– Dictionary attacks takes a lot of memory

Wordlists

• Some very high quality

• Most stuffed full of junk and require editing

– Very long lines, often thousands of characters long

– Non ASCII letters

– Separators that are not newlines

– Since they are big, specialized tools are needed

• Rockyou2021 is a bit big, but very high quality

My Custom Password Tools
• short -s 40 foo > foo.40 short -l 41 foo > foo.41

– splits foo into 2 files, 40 chars and shorter, and 41 chars and longer

• msort -l foo > foo.l - Sorts foo by line length

• ascii-lines -p foo > foo.p

– only outputs lines of foo compromised solely of printable ascii characters

• multi-merge foo.1 foo.2 foo.3 > foo.123

– merges any number of sorted files into a big sorted file

• sample -10000 foo > foo.10k

– outputs one line every 10000 lines, for sampling foo

• line_len foo - Prints line length counts

• count foo - Character frequency count

• pw_stats – Shows stasicists on passwords

• pw_unhex – Removes hex encoding from found passwords

Standard Wordlist Tools
• gnu sort

– You generally want to process sorted wordlists

– Works with files bigger than RAM using tmp files

• uniq
– Remove duplicate words

• comm
– Removes duplicate words in different files

• emacs
– The one true editor, regular expressions, can process

gigabyte files

Relative Hashing Speed

• NTLM Speed 41,825.0 MH/s 
• md5 Speed 24,943.1 MH/s
• LM Speed 18,382.7 MH/s
• descrypt Speed 906.7 MH/s
• SHA1 Speed 788.2 MH/s
• scrypt Speed 435.1 kH/s
• WPA2 Speed 396.8 kH/s
• bcrypt Speed 13094 H/s

https://gist.github.com/epixoip/a83d38f412b4737e99bbef804a270
c40

https://gist.github.com/epixoip/a83d38f412b4737e99bbef804a270c40
https://gist.github.com/epixoip/a83d38f412b4737e99bbef804a270c40

Salt

• 1979 - Unix 12 bits, 4,096 different salts

– https://spqr.eecs.umich.edu/courses/cs660sp11/papers/10.1.1.128.1
635.pdf

• 1980’s - Unix 48 bits, 281,474,976,710,656

• 1996 - bcrypt 128 bits, 3.4 x 10^38 salts

• Argon2 128 bits, 3.4 x 10^38 salts

• Descrypt uses 12 bits of salt

• LM and NTLN doesn’t use salt 

https://spqr.eecs.umich.edu/courses/cs660sp11/papers/10.1.1.128.1635.pdf
https://spqr.eecs.umich.edu/courses/cs660sp11/papers/10.1.1.128.1635.pdf

How to Crack

• Dictionaries - very efficient

• Brute force attack - very powerful, but slow and doesn't scale
– 8 chars upper lower number - 18.340,105,584,896 @229 days on

3060ti

– 12 char upper lower number - 3,226,266,762,397,899,821,056
@12,791,288 years

– 16 char upper lower number -
47,672,401,706,823,533,450,263,330,816 years

• Rule based attack

Rainbow Tables

• Doesn’t play nice with salt

• Very very fast 

• Works with LM, NTLM, MD5, etc.

• Defcon data duplication village – 6tb drives

– freerainbowtables.com GSM A51 and MD5 hash tables

– more rainbowtables, lanman, mysqlsha1, ntlm, and some word lists

• Best used with a small number of hashes

Starting to Crack - Using Rainbow Crack

• I tried Rainbow Crack 1.8

• Used NTLM loweralpha-space 9 char rainbow table
– 43 gigabytes

• Unable to get it working
– Complex process to convert downloaded tables to rainbow table

– Unable to crack a known hash

– Uses 160kbytes per hash 

– Therefore on 936m passwords, 150,000 gigabytes RAM required 

– Contacted project rainbow crack Sep 26 – no response

Starting to Crack - Using Rainbow Crack

• I tried rcracki_mt (0.7.0) (works with rti2 files)

– It actually works, unlike rainbow crack

• Used NTLM loweralpha-space 9 char rainbow table

– 35 gigabytes

Takes 6 seconds per file (SATA SSD), 84 files (504 sec per hash)

– 900m passwords will take 16,000 years 

– Good for cracking a few passwords, bad for millions

Starting to crack - Using Hashcat

• My hashcat machines has 16gb of ram.

• When I ran hashcat on 1m passwords:

hashcat.exe -m 1000 ..\pwned_pw_pruned_ntlm.rawest.1m
..\dictionaries\rock.dic (3.9mbyte dictionary)

Host memory required for this attack: 667 MB

Therefore on 936m passwords, 624 gigabytes RAM required 

Starting to crack - Using JTR rules

• Started using JTR / default dictionary & rules

• Using –fork option consumes a lot of ram – typically 30gb per
fork

• Upgraded from 128gb to 256gb

• Running 6 forks currently

• Found 487,193,352 passwords in 12 days

• Lots more work to do

More JTR

• JTR default dictionary and rules
– Found 154m passwords

• JTR incremental attack (which never finishes)
– Total found 325m passwords

• JTR using rockyou2021 wordlist

– Found 156m passwords (already found with
incremental )

• Got total 256gb ram

• JTR –fork=6 default wordlist & rules
– Found 15m more passwords

More JTR

• JTR --fork=7 apply rules twice

– Found 36m more passwords

• JTR –fork=8 apply rules to rockyou2021

– Found 265m passwords in less than an hour 

• JTR --fork=18 rules on rockyou2021

– Now we can use more threads, as only 140m
unfound passwords

– found @11m passwords in 3 days

More JTR
• JTR brute force lower/number up to len=9

– Brute force all lower/number up to 9 len

– found @3.6m passwords in @4 days

• JTR rules using 811m found passwords as
dictionary

– Found 16m passwords in @7 days

– Will take years to finish 

• JTR apply rules twice on 811m found passwords

– Will take years to finish 

More JTR – control characters
• john.exe --fork=10 --format=NT --verbosity=2 --

no-log --wordlist=\pw-
crack\dictionaries\rockyou2021.dic --
rules=rep_control_1 \pw-
crack\pwn_ntlm.129m.rawest
– Replace a control char into rockyou2021

• john.exe --fork=22 --format=NT --verbosity=2 --
no-log --wordlist=\pw-
crack\dictionaries\rockyou2021.dic --
rules=ins_control_1 \pw-
crack\pwn_ntlm.115m.rawest
– Insert a control char into rockyou2021
– Found 8m (@105k tabs, @7.9m cr)

More JTR – control char rules
From solar designer:
Overstrike any one character
[List.Rules:rep_control_1]
Trivial
o[0-9A-Z][\x7f\x80\x01-\x1f]
Optimized
->\r[1-9A-ZZ] >\p[0-9A-Z] o\0[\x7f\x80\x01-\x1f] Q

Insert any one character
[List.Rules:ins_control_1]
Trivial
i[0-9A-Z][\x7f\x80\x01-\x1f]
Optimized
->\r[2-9A-ZZZ] >\p1[0-9A-Z] i\0[\x7f\x80\x01-\x1f]

Hashcat

• Brute force attack

– lower, upper, number, special len 7 3.7 days

– lower, upper, number len 8 @10 days

• 6m passwords

– lower, number len 9 5.3 days

• 1.9m passwords

– upper, number len 9 5.3 days

• 1.1m passwords found

– Lower, number len 10 – 180 days

• 2.46m passwords found

Password Statistics on 870.0m - Length
Length:

 1: 0.0 % (275) 2: 0.0 % (10220) 3: 0.0 % (203268)

 4: 0.1 % (1,164 k) 5: 0.7 % (6,108 k) 6: 5.5 % (47,769 k)

 7: 8.9 % (77,405 k) 8: 27.6 % (239,920 k) 9: 14.3 % (124,538 k)

10: 16.3 % (141,422 k) 11: 8.3 % (72,074 k) 12: 5.9 % (50,928 k)

13: 3.7 % (32,434 k) 14: 2.6 % (22,281 k) 15: 2.7 % (23,397 k)

16: 1.6 % (13,588 k) 17: 0.6 % (5,192 k) 18: 0.5 % (4,240 k)

19: 0.3 % (2,753 k) 20: 0.2 % (2,161 k) 21: 0.1 % (723 k)

22: 0.1 % (597406) 23: 0.0 % (340760) 24: 0.0 % (336319)

25: 0.0 % (183047) 26: 0.0 % (187938) 27: 0.0 % (114836)

28: 0.0 % (33) 29: 0.0 % (1) 30+: 0.0 % (104)

Password Statistics on 870.0m - Characters
all lower: 18.9 % (164,525 k) all upper: 0.7 % (6,002 k)

all digit: 8.1 % (70,238 k) all special: 0.0 % (41325)

all lower digit: 45.3 % (393,994 k) all lower upper: 2.4 % (20,937 k)

all lower upper digit: 11.5 % (100,450 k)

all lower special: 2.5 % (21,995 k)

all upper digit: 2.7 % (23,631 k) all digit special: 0.4 % (3,631 k)

all lower upper special: 0.4 % (3,704 k)

all lower digit special: 4.3 % (37,256 k)

all lower upper digit special: 2.3 % (19,851 k)

Has control char: 0.0 % (271 k) Has 8 bit asciil: 0.0 % (130 k)

Password Statistics on 870.0m – String Classes

String Classes:

All alpha: 22.0 % (191,465 k)

Alphas + Numbers: 35.1 % (305,622 k)

Numbers + Alphas: 7.0 % (6,0765 k)

Alphas + Specials: 0.7 % (5,767 k)

Alphas + Numbers + Alphas: 6.9 % (60,269 k)

Numbers + Alphas + Numbers: 2.3 % (20,149 k)

Alphas + Specials + Alphas: 1.8 % (15,430 k)

Control chars in passwords

nul [0]=751 soh [1]=1098 stx [2]=722 etx [3]=1003

eot [4]=1555 enq [5]=786 ack [6]=601 bel [7]=637

bs [8]=783 ht [9]=134 k lf [10]=8 vt [11]=545

ff [12]=804 cr [13]=29,280 k so [14]=1234 si [15]=571

dle [16]=574 dc1 [17]=494 dc2 [18]=612 dc3 [19]=604

dc4 [20]=254 nak [21]=261 syn [22]=669 etb [23]=815

can [24]=606 em [25]=691 sub [26]=786 esc [27]=616

fs [28]=638 gs [29]=530 rs [30]=526 us [31]=742

del [127]=1046

Defense

• Don’t use NTLM
• 2 factor authentication

– What you have - Titan security key, yubikey, smartcard
– What you are - Fingerprint, Face ID

• Use cryptographically strong random passwords
• Use a password manager

– keepass, 1password, bitwarden

• I wrote a password generator, here is some output:
password is K)dE;pN%(]R~H6L-11!R bits 129
password is GAw->8k?+Qou#(*#L:Z0 bits 129
password is YmytLWazQ[g{0R@}I2ha bits 129
password is _a^W9h8[J~jsO)*6ahaQ bits 129
password is [q;)y_):BTJAfHZU)7.* bits 129

Other Stuff

• You will want to undervolt / underclock your GPU to save
power

– MSI Afterburner works well, windows specific

• https://www.openwall.com/presentations/OffensiveCon2024-
Password-Cracking/

• https://jakewnuk.com/static/BsidesCaymanIslands2023%20-
%20Leveling%20Up%20Password%20Attacks%20with%20Brea
ch%20Data.pdf

https://www.openwall.com/presentations/OffensiveCon2024-Password-Cracking/
https://www.openwall.com/presentations/OffensiveCon2024-Password-Cracking/
https://www.openwall.com/presentations/OffensiveCon2024-Password-Cracking/
https://www.openwall.com/presentations/OffensiveCon2024-Password-Cracking/
https://www.openwall.com/presentations/OffensiveCon2024-Password-Cracking/
https://jakewnuk.com/static/BsidesCaymanIslands2023 - Leveling Up Password Attacks with Breach Data.pdf
https://jakewnuk.com/static/BsidesCaymanIslands2023 - Leveling Up Password Attacks with Breach Data.pdf
https://jakewnuk.com/static/BsidesCaymanIslands2023 - Leveling Up Password Attacks with Breach Data.pdf
https://jakewnuk.com/static/BsidesCaymanIslands2023 - Leveling Up Password Attacks with Breach Data.pdf

Dictionaries
 47,085,595 linked.dic 11,432,450,014 b0n3z.dic

72,382,568 SkullSecurityComp.dic 13,675,962,135 hashesorg2019.dic

93,559,564 10-million-passwords.dic 13,832,356,359 crackstation_fixed.dic

94,461,698 ignis-10M.dic 17,264,739,583 Md5decrypt-awesome-wordlist.dic

139,749,969 10-million-user-pass.dic 17,539,451,065 collection_1_5_v1.dic

139,921,988 rockyou.dic 17,868,066,068 DCHTPassv1.0.dic

362,881,958 hk_hlm_founds.dic 18,166,067,612 naxxatoe-dict-total-new-unsorted.dic

382,000,913 collection_1_5_v3.dic 18,624,885,828 HYPER-WORDLIST-DIC.dic

1,075,899,306 superpass_fixed.dic 21,102,866,314 b0n3z-sorted-wordlist.dic

1,305,699,616 facebook-lastnames.dic.l33t

1,643,295,189 kac.dic 37,241,758,679 weakpass_2a.dic

2,266,396,047 Super_mega_dic.dic 41,514,529,952 collection_1_5_v2.dic

2,277,681,952 exploit.in.dic 98,378,212,907 rockyou2021.dic

3,107,889,706 thedefinitvepasswordlist_complete_.dic

4,276,546,161 HashesOrg.dic 123,968,583,755 WordlistBySheez_v8.dic

5,403,987,782 hibp_515_found.dic

